A "ratio" is just a comparison between two different things.
For instance, someone can look at a group of people and refer to the "ratio of men to women" in the group. Suppose there are thirty-five people, fifteen of whom are men.

Then the ratio of men to women is 15 to 20 .
**Notice that, in the expression "the ratio of men to women", "men" came first.

This order is very important, and must be respected: whichever word came first, its number must come first. If the expression had been "the ratio of women to men", then the numbers would have been "20 to 15".

Expressing the ratio of men to women as " 15 to 20 " is expressing the ratio in words. There is a quicker notation for this which is $15: 20$

Given a pair of numbers, you should be able to write down the ratios. For example:

- There are 16 ducks and 9 geese in a certain park. Express the ratio of ducks to geese.
$16: 9$
- Consider the above park. Express the ratio of geese to ducks.
$9: 16$,

The numbers were the same in each of the above exercises, but the order in which they were listed differed, varying according to the order in which the elements of the ratio were expressed. In ratios, order is very important.

Let's return to the 15 men and 20 women in our original group. The original ratio reduces to $3: 4$.

The simplified ratio also tells you that, in any representative set of seven people ($3+4=7$) from this group, three will be men.

In other words, the men comprise $3 / 7$ of the people in the group. These relationships and reasoning are what you use to solve many word problems:

- In a certain class, the ratio of passing grades to failing grades is 7 to 5 . How many of the 36 students failed the course?

The ratio, " 7 to 5 ", tells me that, of every $7+5=12$ students, five failed. That is, $5 / 12$ of the class flunked. Then $(5 / 12)$ of $(36)=\mathbf{1 5}$ students failed.

- In the park mentioned above, the ratio of ducks to geese is $\mathbf{1 6}$ to 9 . How many of the 300 birds are geese?

The ratio tells me that, of every $16+9=25$ birds, 9 are geese. That is, ${ }^{9} / 25$ of the birds are geese. Then there are $(9 / 25)$ of $(300)=\mathbf{1 0 8}$ geese.

Generally, ratio problems will just be a matter of stating ratios or simplifying them. For instance:

- Express the ratio in simplest form: $\mathbf{\$ 1 0}$ to $\mathbf{\$ 4 5}$

This exercise wants me to write the ratio as a reduced ratio:

$$
10: 45=2: 9
$$

When both values in a ratio have the same unit, there should generally be no unit on the reduced form.

- Express the ratio in simplest form: $\mathbf{2 4 0}$ miles to $\mathbf{8}$ gallons

When I simplify, I get (240 miles) : (8 gallons $)=(30$ miles $):(1$ gallon $)$, or, in more common language, $\mathbf{3 0}$ miles per gallon.

In contrast to the answer to the previous exercise, this exercise's answer did need to have units on it, since the units on the two parts of the ratio, the "miles" and the "gallons", do not "cancel" with each other.

